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INITIAL TRADE STUDIES

ON

LIQUID ROC"KEr BOOSTERS

FOR THE STS SYSTEM

Under ContractNAS8-37137, duringthetimeperiodNovember 1987 through

February 1988, the following major trade studies were performed with formN

direction by the GDSS Engineering Review Board.

Some conclusions have subsequently changed, as noted in the "updates". They are

provided as background information.
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Under DR-10, "Configuration Evaluation and Criteria Plan", fifteen level one trades

were planned. Figure I lists these trades plus a sixteenth on separation.

that:

Attached arc the results of this work which was completed in February 1988. Note

1.4 "Deg_e of Recovery/Reuse" was combined with 1.13 "Recovery System

Selection".

1.11 "Flight Control Implementation" is not included because it is really an

analysis, not a trade, involving the use of a six degree of freedom flight simulation model

toanalyzerequiredgimbal anglesand rates.

Sincetheywere so closelyrelated,trades1.7(Chamber Pressure),1.12(Tank

Config.)and I.14 (PressurizationSystem) are grouped together.

These u'adesallusedthesame selectioncriteria,emphasizingsafetyand rcli_ibility

asshown inFigure2. Much ofthisdatafedintovehicleconceptselectionwhich was made

based on thesame criteria.One oftheindirectadvantagesof theformaltrade/ER.Breview

processwas toincludethewhole studyteam in discussionsofLRB requirements,

conswaints,assumptionsand selectioncriteria.



LRB TRADE STUDY ASSIGNMENTS AND STATUS

PAG....._.EE

8

26

52

1.1 CONFIGURATION
OPTIMIZATION

1.2 NO OF ENGINES &
ENGINE OUT

1-_ ABORTMODE
OPTIMIZATION

D. SMITH G.FARMER FINAL 7 DEC 87
WRITING REPORT

G. MEHTA G. FARMER

J. PATTON G. FARMER

FINAL 7 DEC 87
WRITING REPORT

INITIAL 12 NOV 87
INTERIM 7 DEC 87
INTERIM 14 JAN 88

86 1.5 PUMP FED - PROPEL
SELECTION

]L)4 1.6 PRESS FED- PROPEL
SELECTION

!14 1.7

160 1.8

i78 1.g

200 1.10

PRESS FED-CHAMBER
PRESSURE SELECTION

PUMP FED -ENGINE
PERFORM_ELECTION

PRESS FED -ENGINE
PERFORM/SELECTION

PROPULSION- IGNITION
SEQ AND HOLD DOWN

T. NGUYEN M. VACCARO

T, NGUYEN M. VACCARO

W. PIERCE M, VACCARO

FINAL 4 DEC 87
WRITING REPORT

FINAL _ DEC 87
WRITING REPORT

INmAL 5 NOV 87
FINAL 12 JAN 88
WRITING REPORT

G. MEHTA L PENA INITIAL 8 DEC 87

G. MEHTA I, PENA INITIAL 8 DEC 87

J. DAVIS L PENA INITIAL 17 NOV 87

120 1.12, TAN K OONF|GU RATION
SELECTION

232 1.13 RECOVERY SYSTEM
SELECTION

146 1.14 PRESS F:.D -PRESS
SYSTEM SELECTION

?70 1.1;5 FACILITY OPTIMIZATION

290 116 SEPARATION SYSTEM
SELECTION

349 1.17 LRB STIFFNESS

T. SACZALSKI L PENA

A. ORILLION G. FARMER

INITIAL 11 DEC 87
INTERIM 15 JAN 88

(REVIEW VIA PHONE)
INITIAL 15 JAN 88

W. PIERCE M. VACCARO INITIAL 1 DEC 87

J. WASHBURN L PENA

P. BRENNAN

V. SHEKHER

L. PENA

INITIAL5 NOV 87

COMPLETED

COMPLETED
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LIQUID ROC_T BOOSTZR

Trade Studies

Listing and Descriptions

TS # Trade Study Title Trade Study Description

m_J_

i.I

1.2

Length - Diamete_

Optimization

Number of Engines &

Engine Out Trade

• _.d.! 3 _.bc__ Mode Optimization

!.4

!.5

1.6

Degree of Recovery/

Reusability

Propellant Selection

Propellant Selection

Determine _he optimum length to

diameter ratio (L/D) and configuration

of the LRBs to achieve required

performance and maintain acceptable
aerodynamic loads cn the Orbiter

wings.

Perform an analysis of Orbiter and _B

engine-out capability resulting in a
definition of required LRB to_al

impulse (and th.-us: level). Selection

of _he appropriate sized engine (and

the number of engines re.cuired) are

based on thrust reqairements.

Determine improved STS abort modes and
scenarios which can be implemented

with the use of LRBs. Provide

.._ .O- --- aSCm ,"recomme-; abort modes = _ a _ _z.

flight phases. _bort modes should
ex_bl__ .*_ - greater mission *_ _ '_=vo_.e. --

and/or reduced (STS) LCC.

Selection of no recovery, P/A module

recovery, and/or tank recove.--y nodes.

Dete_ine the degree of reusability
and refurbishment of recovered

equipment.
• o

Select propellants based on

Derform.,ance, safety, and _RB

configuration cons=taints (L/D) for a

pump fed propellant system. Present
alternatives are: L02/.I_:2,

LO2/CH4,LO2/COH$, LO2/RP-I,

LO2/CH4/L_2, LO2/CDHS/LH2,
LO2/RP-I/LH2, N204/A-50,N204/_!_'_.

Selection of propellants based on

performance, safety, and LRB
configuration cons:taints (L/D) for a

pressure fed propellan_ system.
presen_ a!Zernatives are: (see T.S.

1.4)

J



TS # Trade STudy Title Trade Study Description

1.7 Chamber Pressure

Selection

1.8 Engine Performance/

Selection

1.9 Engine Performance/
Selection

I.i0 Ignition Sequence and
Hold Down

i.!! Flight Control

_mplementation

1.12 Tank Configuration

Selection

1.13 Recovery Systems
Selection

1.14 Pressurization System
Selection

Selection of the optimum tank and

chamber pressures to obtain minimum

engine, tank and propellant weight for

a pressure fed LRB propulsion system.

Selection of the appropriate pump fed

engine based on propellant selection
and thrust (also dependent on number

of engines) re._/irements.

Selection of the appropriate pressure

fed engine based on propellanu
selection and thrust (also dependent

on number of engines) re cuirements.

Investigate ignition se-._/ence, thrust

build-up, and release characueristics

to minimize the "twang" prior to
"8 _8ll_-O_.

Selection of source of flight control.

The sources are LRB (autonomous

control), Orbiter GPCs (as S_Ms), or a
combination.

Selection of the recommended _ank

config. & materials including
consideration of insulation and

thermal protection. Both Pump and

pressure fed systems will be

investigated and a recommendation will

be provided for each type of

propellant system.

Selection of the recommended LRB

recovery systems including
consideration of separation,

trajectory., thermal protection,

de_loyment, control, landing impact
attenuation, landing sites, and

reusability / refurbishment.

Select method and systems for pressure

fed propulsion system's tank

pressurization.

1.15 Facilky Optimizm/on Determine the best launch/'MCS concepts to be used
to process and launch _= Liquid Rocket Booster
while minimizing interface impacts with the STS.
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UPDATE ON TS I.ICONFIGURATION

Configuration Optimization involves 2 related are,_:

a) To avoid overloading the Orbiter wing (and other constraints) at max alpha q,

non-standard LR.B arrangements were considered. MSFC performed wind runnel tests

which d./.recfly related to those questions.

Th_ tradestudy recommended rotating (or clocking) thelarge LR.B so that the

distance from the LR.B skin to t.hc Orbiter wing remained 15 feed _ the mean aerodynamic

chord. Later wind tunnel data indicated this concept is not as effec::ive as hoped and

disr_bsthelateralaerodynamics.Based on subsequentwind runneldam & loadsanalyses

our current(5/13/88)recommendation toreliavewing loadsistoreducemax alphaq for

largerdiameterand longerLRB's which arelocatc,.don theET centerline.

b) The secondareainvolvesopdmum lengthand diameterdimensions.The SP,.Ms

have an I./Dof 12.2.The amched memo explainswhy we feelthisisroughlyOK for

LR.B.

Thismade issubjectm updating& refinement.
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UPDATE ON T.S. 1.2 NUMBER OF ENGINES

The attachedmemo isa con_nua_on and updateoftheoriginalmade studyon the

numbcx of engines. It wa_initially a_sumed _at the Shuttle crew must bc able to safely

pc'form a contingency abort if one LR.B engine failed. This leads to the basic requirement

for a minimum of 2 engines per LRB.

We believe that LR.Bs must have superior mission rcliabHL7 to SR.Bs, if the

program is to bc "sold". Therefore we are currently (5/13/88) sizing LR.Bs to meet the

exu'a requh"cment of abort to orbit with one engine out.. Minimum tba'ust-to.-wcight at

launch to clear the towe_ with one engine out and nominal TflvVat launch for minimum

GLOW arc vital considerations. So is the throttle range.

The attached memo summarizes our belle/" that 4 en_es _ the best (safe and

relhble) choice for LR.B. More re,cent performance runs with new cons_ins for the ET

bulkhead are showing re,quirements for th.rotflhng >35% which impacs engine costs

and may bca development ris for LOX/R.P.

"1"nis_'ade should be reevaluated.

42



To: Dan Heald

ORIG_NAL PAGE IS

oF I,o_ _Ln-Y

From: Gopal Mehta & Paul R. Brennan

Subject: Assessment O_Number Of Engines Required ,#

Reference: Memo L. Wear 3/18/88. Results Of LRB Configuration Selection

Review

" "This memo is.a response to lhe above action item, and presents our

reassessment of the number of engines per LRB. 3, 4 and 6 engine

arrangements as shown in Figure 1.0 were evaluated. The results discusse_
herein are mainly based upon analyses conducted using the LO2;RP.1

pump-fed booster. However the trends represented are considered valid for
the other selected LRB concepts. Any significant differences between

concepts are discussed• Based on results to date, we conclude that 4

engines should be used on all three LRB concepts.

The criteria by which the number of engines was chosen are summarized

below. T-hose criteria are the same as those used for the configuration

trade studies, and are ranked in order of importance.

1) Safety/Reliability: The reliability of the propulsive system to

accomplish a given mission diminishes as the number of engines increases.

To improve safe_, or better the chances of saving the crew and paylcac; in

the event of an engine failure, it is desirable to have engine-out ca_ability.

If engine out capability is designed into the booster, the reliability of the

propulsive system to meet the desired mission is improved. Examine Figure

2.0. The GD goal ._s to s:',.,.= the L.=._.s such that if a booster engine f-:i]s

d-,rin; ascent, it is sdll possible for the or:iter to Ceiiver foil =.aylcad ;_. -
a reduced "safe" orbit and retvm the crew. T abie I shows reliability .=,...=_

with and v,'ithcut engine-out ca;abili'y -sing typical ;ump-fed ar,,'_

._,_t==e,,,=.{=,-'......... reliability c='='-- ='ec.--"==-... hi;}-, reliability ic. desired, the basic

conclusion can be drawn that a four engine arrangement is preferred over a

six engine arrangement.

2) STS CoMpatibility: The quantity of LR3 en;ines used affects the

_-=-';,,,. -erodynamic d.ae control of theMLP/Flame trench, plume/base ,,.=,,,,=, = .,

f tt "1 "e "_' d.mated vehicle, and e,o,.nc,,h,.,n, operations.

For our initial trade studies, free :l,.'me expansion in the ML. = was assume_

to be similar to the SSMEs, ant the LR_. nczzie dian',,eter was cons:raine_

such that the plume from the LRB engines slruck the flame deflectors

Ic, cate_ over the flame trench in the same manner as the SR._s. This low

risk a._pr,_a:h allov, ed a maximum exit diameter of $0 inches. Optimum

.45



pump-fed engine performance can be achieved within this limitation.

However, the pressure-fed engine performance (for 4. engine LRBs)

optimizes with nozzle diameters over 90 inches (see Figure 3.0); if 6

engines are used on the LRBs it is easier to optimize engine performance
within the 90 inch nozzle limit. Because the 4 engine pressure-fed booster

optimizes with nozzle diameters greater than 90 inches, we asked our
subcontractors, PRC and Rocketdyne, to assess the possibility of using

nozzle diameters greater than 90 inches. We feel that by shaping the t,'LP

flamehole side walls and modifying the flame deflectors it will still be

possible to channel {he exhaust into the flame trench. However, scale

model testing will be required to verify/prevent overpressure wave

impingement on the engines or interference .with their operation. Hence,

although 6 engines are better suited for J.c'f the 90 inch diameter limit,

currently no major impact is foreseen in increasing the exit diameter

beyond 90 inches to get optimum size/performance using 4 engines.

An initial assessment made by Eagle Engineering suggests that the plume

radiative heating to the orbiter body flap with engines aligned in a vertical

row, rather than a clustered about the booster centerline is more severe

(-i0%). To fit within the. geometry of the flame trench, the row layout is

better suited for the 6 engine case (Examine Figure 1.0). However, for

either engine layout (in a row or clustered around the centerline), the LRB

base heating rate will be approximately -30% less than the current SR_s.

The aerodynamic drag of a 3 or 6 engine LRB is expected to be greater than

that of the same booster using 4 engines due to the larger aft skirt area

(assuming the 6 engines are aligned in a row as presented in Figure 1.0).

Presently vehicle control does not pose any problem for all three numbe; of

engine options. For com;arison, engine out gimbal angle were calc_.,late_

using the RP-I pressure-fed booster with 3,", and 6 engines. The wore: .
_I,,,case was ,,,e three engine case and the ='""¢' . -,. ., .,=.., cim_,al =cole for enc_,",eou"

a'. maximum dynamic pressure was less than 5 ,?,egress.

Ground/flight operational complexity will increase with increasing num3er

of engines. In terms of ground operations, additional test and checkout will

be required for additional engines, actuators, feedtines and avionics. In

terms of flight operztions, additional software development v,'ill be

required as the number of engines increases. Additional costs due ;o

• la_V_increased operational complexity as the number of engines multi_iies "- =
not been evaluated.

3) Performance' In this section, impact on Emercency Fcwer Levels (EPL),

vehicle weight, en;ine weight, and throttlinc, rec'..,irements. ..,_,,,,r=,,,,;,=_.,,-..-r==
discussed.



As shown in Figure 4.0, the booster lift-off weight minimizes at nominal

T/W -, 1.52 for a 4 engine LOX/RP-1 pump-fed booster. To achieve an ATO

(due to engine-out at liftoff) without changing the size of the LRB and

using approximately balanced thrust during ascent, one needs a T/W=1.25

at liftoff; the T/W required"for ATO-,_ sufficient to clear the pad in the

event of wind drift as analyzed by LEMSCO (i.e., T/WAT o • 1.2). The 1.25 T/W

requirement means an emergency power level (EPL) is needed for the 4

engine case as calculated by:

T/WEpL. I't'TfW_ATO " Vehicle Wt - Tss_'E)'£'6 +TssMr-

Vehicle Weight

=1.58

Thus a slight up-throttle capability (-6%) is needed. Extrapolating this

data to 6 and 3 engine cases, it seems no extra EPL is needed for the 6

engine case, and the T/WEp L for the 3 engine case is 1.7. tf the nominal T/W

is on the order of 1.5 then this increase in thrust level represents

additional engine cost and weight. One can view the impact of ATO on the

number of engines required in another fashion. If no EPL is provided, then

the booster must be sized to a T/W which, with an engine out at liftcff,

provides a T/W ,,1.25. For the 4 engine booster this nominalT/W woul_ be

1.58, for 3 engines it would be 1.7 and for 6 engines it would be 1.4£. If

one assumes that the relationship shown on Figure 3.0 is largely

independent of the number of engines used, then for the six engine case the

optimum T/W of 1.52 can be used at liftoff and still have ATO capability

with engine-out. However, for the 4 engine case there is penal_ in weight

for sizing the booster at a T/W of 1.58 rather than 1.52 (<5000 LBs). The

penalty in weight lor the 3 engine case is much larger. The difference

between sizing at a TIW of 1.7 rather than 1.52 is a_-'pr:ximatety 35.000

tbs. Thus there is ho impact for 6 engines, a very slight impact for 4,

engines, and a large impact for 3 engines. Similar trends hold '[,or

pressure-fed engines if optimum expansion ratios can be used (see the

discussion on "STS Compatibility"), except that any EPL requirement

imposes larger cost and weight penalties than for pure,., f..., engines cue to

the need for higher tank pressures.

The weight of the engines increases slightly with increasing number of

engines (after 4). Yet even with inclusion of accessories, the difference in

weight is quite small.

The approximate throttling range for various numbers cf engines (with and

without engine-out) ,--'e shown in Table I An acc.e#te 4 r-,le of thumb in the

industry is that 35-40_," throttling is easily achieva_'.ie. Any higher ra,_ge

imposes Sighifioar',t technological risk and cost. For the AP-1 pump-fed

booster ,,_=4...... in th;_ comparison, ,,,_,,,= ranges for .,,.. ,,""'_' "",,,e 4 and 6

,45



engine configurations fall within this range, but the 3 engine case requires

--49% throttling.

4) Cost: The approximate change in engine DDT&E cost and manufacturing

cost with change in number of engines are shown in Table I. As expected,

DDT&E cost per engine (_ecreases with an increase in the number of engines

used per booster, There is not much of a change in engine manufactunng

COSt per LR_ as the number of engines changes.

Safety and reliability are improved if _he minimum multiple

number of engines is used per LRB (while still retaining engine-cup

capability). A 6 engine configuration is poorer, than 4 engines in terms of

safety/reliability, overall vehicle complexity, and STS compatibility. As

safety, reliability, and STS compatibility are the premier criteria for

judging options on this program, we conclude that 4 engines per LRS is the

best number of engines to use.

Paul R. Brenr,_.n

.4(:,
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The number one objective of the LR.B program is to h'npmve Shuttle safety

including better abort capabilities. Obviously this is closely integrated with Orbiter

capabilities, so we had many discussions in Houston (such as those on 2/16 - 2/18 1987

per attached kinerary).

Two initial desires were not reasonable:

a) To eliminate the TAL bases by having R'r'I._ and ATO overlap. (Sites still

needed for emergencies.)

b) Major trajectory reshaping (lofted or depressed) to improve TAL and ATO.

(Orbiter constraints limit trajectory shaping to a large degree.)

Instead we found that improvements in various abort scenarios were all that is

reasonable in view of the tight Q-alpha corridex conszraints. Engine out and engine

fi'n'ordingabilkiesarcmajorimprovements. Anotherbenefitwould resultfrom LR.B

capabilitytoshutoffand separateataboutg0 secondsifa splashdown isthelastresort.

Continuingtrajectory,opdmizationshave shown thateachconcepthas an opRmum

launchT/W. This_'adestudyshows optimum T/W = 1.42forLOX/R.P- I. Lateranalyses

tooptimizegrossweightshowed 1.5nominal (whichallowsATO with Iengine'out)_

Otherlatexideasincludethrottlingup - 10% on thesidewithengineoutand down

-80% on theotherside.

Thiswork must continuewitheverincreasingdetailedIz'aje_torywork by J'SCand

itscontractors.

%.



(Attachment A)

NASA/JSC TRIP ITINERARY
(2-16-87 to 2-18-87)

Wednesday, February 17,1988
Session 1
8:30 am - 11:00 am
EAGLE ENGINEERING

Subject

Abort Mode Design
Premature LRB SEP vs FASTSEP

Abort Mode Propellant Margins

Ignition Sequence�Structural Dynamics

Session 2

12:30 pm - 4:00 pm
LOCKHEED

Subject

Intact Abort Design
Contingency Abort Design
Premature LRB SEP vs FASTSEP

Performance Requirements
Ignition Sequence/Structural Dynamics

Thursday, February 18, 1987
Session 3
8:00 am - 11:30 am
NASAJJSC

Subject

RTLS and TAL Abort Design

Abort Propellant Margins

Abort Contollability Requirements

Ignition Sequence�Structural Dynamics

EAGLE

J. Wood
T. Zack

W.Hoyler

LOCKHEED

P. Fardelos
D. Blumentrit

TBD

NASA/JSC

I st Lt J. Turner

C. Sparks

C. Frayley

"I"BD

GDSS

J. Patton
S. Seus

W. Thompson

G. Buchanan

GDSS

J. Patton

S. Seus

W. Thompson

G. Buchanan

GDSS

J. Patton
S. Seus

W. Thompson

G. Buchanan
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(Attachment B)

MEETING"ATTENDEES
911!

General Dynamics

Soace Systems Division

Steve Seus
Jeff Patton
Walter Thompson
Guy Buchanan
Celeste Salvaggio

Rockwell Shuttle Ooerations

AnoN/Flotto_
Elmer Johnson

Carson Sparks

Eaqle En0ineed.,n.q

Jim Wood
Tom Howe
Carol Blaknoll
Tom Zackrewski

Wil Hoyler

NASA/JSC

1st Lt. John Turner
Jim Akkerman

Lockheed En_oineerin 9
MaintenanceSuooort Com oan v

Jim McCurry
Pete Fardelos
David Blumentrit
Chris Chdstofferson

Nancy Carter
Wes Kelly



r

r..D._

m

0
l

l-
r_
ILl
_I
LLI
0'_

I--

0
r'r-
D=

ILl
I=_

D.

Z
I=I.I
>-

Z

Z

I=-

©
r_-
<
¢..)

>

ILl
v-

ILl
LI.J

z_
Lu ©

Z
< L.u
U.l C/D

>- U.I

_,¢3"

Z_

.2



:si._



®



'i

_q

®



0
m

,,i

W

mn

,,i

m

m

W
N
>-
-J

Z

LAJ
Z
m

Z
ILl

!

,ll

(/)

u • •

w

LAJ

m

c_

Z
0
m

..J

.<
:>
L_

m

rn

0.

©
LAJ
Z

Z
,,J

©
o

Z

0..

0
,,t

Z

0
n-
_D

e_

Z

_n

©

<

nn
<

<



8



!

w

w

i S _ _

_ o •
I Z • " " r-_

I,L • C_

9g,



0
0
cn

m

q_



U.!

,<
rr-

ILl

ILl

L_

m

E

Z
0
m

I---
0,.
0

i.1.1
,..I

1.1.1

lira

I.u

l..-
r.O

I.U
...I

1.1.1
"r-
I"-

ILl

0
I'--

r'r
,<
I.U

0.

u.I
Z
m

u.l

cq
!

,<

¢o
Z
0
m

l-.-

I.u

m

Z
0

>..
I.--
111
I.I.

o')

..I
,<
I---
Z
u.I

Z
0

>
Z
I11

0

0

uJ_
.d

uJ

I.u Z
m

1.1.1_
mira

_=
mO
0 _

tu 0
"r Z

ul _/'1
mu,l

0

_M

!11
n_

,<p.
m _
wO
zO
m

Z_
u_ .

I

mu-_

=
I--

u_
m

Z
0
m

u_,.r

e_e_
u,l_l
"rl-

0_

nO

Z

'if)



m

iI

Z
-r-

w
w w > 0

0 0 w r_

• • • 41 •

0
I



®



_7



0

9_



C_J

O



0
I--
z I

I00



E

4

• i
g

, i

t,HO_07 e_ o o _ en 0 _i _ _ _ _n

HPtPI/O.I.N u.. _ _ ,_ 0 _ '_ _ -' ,, 0

o =

_H_O/_07 = = = _ o o o o o o :

=, i o oooo ooo

_ !

co _ _ 0 0 w



i02.



4

UPDATE ON T.S.1.5 PUMP-FED PROPELLANT SELECTION

The data in this trade study was a major element in concept selection. After the

midterm review, we stopped considering reusabilit3,, but cost and risk considerations became

more important.

On 5/16/88 our selected concepts all use LOX/HC propellants:

LOX/P.P-I AND LOX/CH4

Higher cost estimates eliminated SSM.E before the midterm and new LOX/LH2

pump-fed engines just recently. Reduced costs, perhaps by sharing with the ALS

program, would make LOXILH.2 a very viable candidate for LR.B.
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UPDATE ON T.S. 1.7 OPTIMUM CHAMBER PRESSURE

This n-ade was performed assuming advanced technology graphite-epoxy propellant

tanks (see Trade 1.12). The answer is also strongly dependent on pressurization system

weights (see Trade 1.14). Pressure fed engine features such as gimbaling and cooling also

had to be assumed before Propulsion Subcontractor trades were complete. Based on these

assumptions, we recommended a Chamber Pressure of 400 psi.

Subsequently there have been major changes. As of 5/13/88, we feel the optimum

Chamber Pressure is approximately 330 psi. This is based on 2219 aluminum tanks,

because of the high risk associated with graphite epoxy liquid propellant tanks (particularly

for LOX'). Work is continuing to consider nozzle exit diameter limits due to the KSC

facilities, gimbalhng high pressure inlet lines, feed line arrangements, and the risk of

combustion instability, throttling at this chamber pressure.
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UPDATE ON T.S. 1.12TANK CONq=IGURATION SELECTION

At the midterrn program review we re.commended composite tanks to minimize

weight on the pressure fed LR.B concept. We acknowledged the risk in this new

technology area particularly an aluminum liner in the LOX tank. In his memo 3/14/88,

"Results of LR.B Configuration Review", MSFC./Lan3, Wear advised us that "...the

selection of composite tanks for cryogenic propellants is inconsistent with design goals of

maximum flight safety."

Therefore we have adapted as a low risk baseline lithium-aluminum for pump fed

tanks and 2219 aluminum for pressure fed. The difference is due to the approximately i

inch thick walls for pressure fed. Most AI-Li work to date has been on I/4 inch thickness

or less, with good results in LOX compatibility, VPPA weldability, etc. On thicker

sections there is less information. Problems have occurred with weak u'ansverse propemes

in thicker sections.

Using GDSS IR.AD funds, we are continuing to explore graphite epoxy propellant

tanks for LOX, ILP-i, and LH2.
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UPDATE ON T.S.1.8 PUMP FED ENGINE SELECTION

When the contract started, we used existing STBE and SThiE data plus parametric

data available from engine contractors. We had to consider both expendable and reusable

modes since T.S. 1.13 hadn't even sta.ned. This trade study summarizes our fu'st cut

choices up to February 1988.

After the midterm program review, we included in Rocketdyne's subcontract work

on gas generator LOXN,-P and LOX/LH2 engines sized for LRB. We also sm'xed working

with hart and V_Vn,imeyon split expander cycle engines using LOX/LH2 qand LOX/CH4.

Therefore all the data including costs have changed.

Also at the rnidterm program review we selected expendable concepts, because the

LRB mission modeI did not justify the substantial investment in reusability. This meant

That engine costs, particularly rccunfing costs, became very. important.

Our final pump fed chine selections as of 5/16/88 a.,'e a LOX/R.P gas generator

concept and a LOX/CH4 expander cycle.

/77
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UPDATE ON T.S.1.9 PRESSURE FED ENGINE TYPE

This trade study was completed in January 1988 based on preliminary data for LRB

generated under subcontract by Rocketdyne and TRW. Many engine subsystem trades

remained to be run or rerun: injector type, regenerative cooling vs. ablative coatings, head

end gimbal vs. nozzle only. The data had to cover both expendable and reusable concepts.

After the midterm review, when expendable concepts were recommended,

Rocketdyne has continued under contract. We continue to recommend LOX/KP as the

propellant combination. The choice of subsystems was made difficult by lack of

exper'ience with LOX./R.P ablative materials. Clearly there are a number of technolo_- gaps

which need to be demonstrated on the MSFC pressure-fed LRB test bed program.

Our current baseline features regenerative cooling, head-end _mba.l.ing, and

moduIar injectors.
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Trade Study 1.10 provides a preliminaryanalysis of the LRB

configured STS ignition and launch sequence, and the resulting transient

response induced by the SSME thrust build-up. Five preliminary down

select candidates were examined with the following guidelines and

constraints used to complete this analysis:

1) Current SSME ignition sequence can be modified if necessary

2) Gross Thrust/Weight ratio at STS release _; 1.0

3) Minimum SSME power level at release ?_.90%.

4) F-1 engine rise time and Saturn V ignition timing were

used for LRB ignition analysis.

Two release techniques that have shown potential for improvement of

the adverse transient characteristics are the release of the stack prior to

the peak of transient loading, and employing a modified SSME ignition

timing sequence that manipulates the STS transient to reduce maximum

bending moment and twang at release. The early release technique

indicates a possible reduction of hold down post loads by approximately

70% at the maximum and 10% at release. A potential savings of 7500 Ibs

of SSME propellants is also indicated. The modified SSME ignition

sequence may reduce post loads by 50% at the maximum and 3% at release

with a savings of 3900 Ibs of SSME propellants.

These findings indicate that compliant boosters and modified ignition

timing can be used to reduce the problems of hold down bolt load and

twang associated with the ignition and release sequence, while providing

some improvement in SSME propellant margins.

Potential problems with these techniques center aroun_ the balance
of thrust between the SSMEs and LRBs at release. To hold to the

constraints of T/W _ 1 and the 90% SSME power level requires that the

stack be released with LRB engine thrust levels between 55% and 75%.

Additionally, the low booster thrust level at release and the "slow" LRB

engine rise time (as compared to the SRB) may summarily preclude the use

of an explosive release system because of control authority problems near

the pad and the health verification capability with 55% to 75% LRB power
levels at release.

If these problems cannot be resolved, or if the final LRB configuration

is stiffer than these techniques will allow, a damped launch release

system designed to alleviate both base bending moment and transient

launch loads appears to be a potential solution to the problems discussed
here.
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SECTION 1
INTRODUCTION

A dynamic transient occurs when the Orbiter SSMEs are ignited and theSTS
deflects in response to the offset thrust. When the stack springs back to a minimum
deflection, the SRBs are ignited, holddown bolts are released, and the stack lifts off
the launch pad. High bolt loads and bending moments are produced by the transient,
and severe vibration or "twang" occurs when the vehicle is released from the launch
pad.

1.1 OBJECTIVE

The objective of this trade study was to investigate engine ignition and release
sequence characteristics for an STS configuration with Liquid Rocket Boosters, and
identify methods and techniques that would:

1. Minimize twang at STS release
2. Verify engine health prior to STS release
3. Minimize LRB pre-release loads

1.2 GROUND RULES AND ASSUMPTIONS

Ground rules and assumptions are listed in Planning Sheet 1, Figure 1.1. Arrows
indicate revisions made during the course of the study as STS data were acquired.
Ground rules 1 & 2 are carded over from the overall scope of the LRB study. F-1
engine data and the Saturn V ignition sequence were used for analysis since they
are existing, proven systems and considered representative of candidate booster
engine characteristics.

page 1
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SECTION 2
ANALYSIS

The trade study comprised the following key activities:

1. Establishing applicable requirements and guidelines
2. Analyzing the current STS ignition sequence
3. Defining alternate ignition and release methods
4. Determining preliminary properties of candidate LRB configurations
5. Sensitivity analysis
6. Analysis of candidate configurations
7. Evaluating alternate methods
8. Presenting conclusions and recommendations

2.1 REQUIREMENTS AND CONSTRAINTS

For this study, two requirements were identified based on STS safety guidelines as
shown in Figure 2.1. Requirement 1 states that the STS will not be launched until all
engine systems are verified healthy in an operating state. A verifiable, healthy
operating state is currently defined for SSMEs, but is not available for conceptual
booster engine designs. It will be shown later in this report that definition of such a
state may be crucial to the final selection of a launch method. Requirement 2
provides that no backup system intended to sustain powered or controlled flight will
be used for launch, and launch must occur with prime systems in operational control.

Constraints were significantly revised between the initiation and completion of the
study as STS data were obtained. Explanations for each revision are provided below
the applicable constraint in Planning Sheet 2, figure 2.1.

2.2 EVALUATION CRITERIA

Evaluation criteria are listed in the Cdteria Applicability Matrix, Figure 2.2. Criteria
were selected to be consistent with the overall study, and where the ignition
sequence could have a significant impact to the final selection of an LRB
configuration. Quantitative evaluations of safety, reliability, and performance were
significant in the result of this study.

2.3 DESCRIPTION OF THE CURRENT STS IGNITION SEQUENCE

The current STS ignition and launch sequence is illustrated in Figure 2.3, Nominal
STS Ignition Sequence. The SSMEs are started at 0.12 second intervals (3"1 & T2),
with each engine rising to full thrust in 1.905 seconds. Total rise time to full SSME
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power is 1.905 +. 12 ÷. 12 = 2.145 seconds. The current STS co nfig uratio n (wit h
SRBs) has a bending frequency of .30 Hz, with a half wave length of 1.667 seconds.
The major elements of the ignition sequence are discussed in the following sections.

2.3.1 SSME IGNITION

Ignition and thrust buildup of the SSMEs bends the stack forward in the X-Z plane.
During the delay until release at 4.382 see., the SSMEs burn at full power for a total of
7.07 engine seconds as follows:

Engine #1
Engine #2
Engine #3

4.382 - 1.905 - 2.477

4.382 - 1.905 - .12 = 2.357
4.382 - 1.905 - .24 = 2.23_

7.071 total engine sec

SSME ignition, dse time to 100% of rated power level (RPL), and the stagger time
constants T1 and T2 are detailed as item 1 in figure 2.3.

2.3.2 MAXIMUM RESPONSE TO OFFSET SSME THRUST

Coupled to SSME ignition, the STS stack flexes through one cycle of response,
with the maximum deflection of the stack (item 2, Fig. 2.3) occuring 2.75 sec. after

SSME ignition. At this point, the boosters expedence the maximum base bending
moment of approximately 570 million in-lbs. SRB mass is thrown in front of the
bending axis, aiding the transient, but the Orbiter/ET mass opposes the transient at all
times with its mass offset 43 inches behind the bending axis.

2.3.3 HOLD DOWN BOLT RELEASE POINT

At 6.6 seconds after first SSME ignition, the stack has sprung back to a minimum

deflection point where the base bending moment is approximately 145 million in-lbs
(item 3, Fig. 2.3). At this minimum moment point the SRBs are simultaneously ignited,
and the 8 hold down bolts are released. This rapid booster release in the presence of

a significant bending moment provides the "twang" as strain energy in the boosters
rapidly dissipates as free-free vibration. A reduction in the base bending moment
experienced at release will result in a reduction of the resultant twang.

2.3.4 SRB IGNITION

At the instant of release, the SRBs are simultaneously ignited ( Item 4, Fig. 2.3) and
thrust build up occurs rapidly, reaching full power 0.35 seconds later. Approximately
0.2 sec after ignition, SRB thrust levels are sufficient to produce a total threst to weight
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ratio (T/W) of one. The stack begins to fly off the pad with the SRBs still gaining thrust
for another 0.15 sec.

2.4 COMPARISQN OF ENGINE RISE TIMES

Rise times from 0 to 100% of RPL for the SSME, SRB, and F-1 engines are
illustrated in Figure 2.4. As shown, the SRB rise time of 0.35 sec is an order of

magnitude less than either the SSME (at 1.905 sec) or the F-1 (at 2.6 sec). This rapid
rise time allows the current practice of releasing the stack with a T/W significantly less
than one. In the 0.35 sec between STS release and achieving full SRB thrust, the
stack does not rotate or translate significantly, and the vehicle flys off the pad before
the dynamic state of the free stack exceeds controt recovery boundaries.

With liquid propellant engines, the rise time is slow enough that a similar release
sequence could result in a collision between the vehicle and fixed launch pad
structures. The time between release and T/W = 1 is sufficient to allow the vehicle to

move beyond recoverable control boundaries. Because of this and the requirement
for health verification, LRBs must be ignited and restrained until sufficient thrust has
built up. Whether or not the vehicle can safely clear the launch structure in the one to
two seconds between release (at T/W= 1) and full thrust is beyond the scope of this
trade, and will be addressed in future analysis. For the purpose of this study, a T/W
ratio of one is assumed to be adequate.

2.5 DESCRIPTION OF ALTERNATIVE APPROACHES

The alternate methods of ignition and release examined in this study are
summarized in Planning Sheet 4, Figure 2.5. Simultaneous ignition of SSME and
booster engines was ruled out because of the difference in engine rise times and
thrust. At the point where TAN = 1, the LRB engines would be at approximately 79%
of RPL and the SSMEs ._t 48% of RPL, which violates constraint #3 for minimum
SSME power at launch.

Ignition of LRB engines before SSME engines was also ruled out. Since the
dynamic transient is produced by SSME thrust input, the LRB engines would be
burning fuel unnecessarily while wafting for the minimum moment point in the
transient response. In this situation, the consumption of LRB propellants on the
launch pad reduces payload lift performance by almost 1100 Ibs/sec of delay.

Thus, the current practice of igniting the SSMEs first appears to be the most
efficient method. However, it will be shown that the cu=;rent stagger time of 0.12 sec
may not be optimal. Analysis indicates a modified SSME ignition sequence would be
advantageous for controlling the dynamic transient.

For LRB engine ignition, a sequence similar to that used for the Saturn V was
adopted. The five F-1 engines on the Saturn were ignited in the following order:

1. Center engine ignited
2. 0.20 second delay
3. #2 and #4 engines ignited
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(Saturn V Ignition Sequence continued)

4. 0.20 second delay
5. #3 and #5 engines ignited

All candidate LRB configurations possess four engines, and the assumed ignition

sequence is identical to steps 3 through 5 for the Saturn.
Initially, ignition overpressure was perceived to be a problem for LRBs, similar to

that experienced with SRBs. However, ignition overpressure is proportional to
combustion chamber pressure rise rate, which for liquid engines is an order of
magnitude less than for solids. Because of this, it was assumed that simultaneous
ignitition of engines on both boosters would not exceed current SRB overpressure
limits. Thus the basic ignition sequence for the LRB configured STS became:

1. Simultaneously ignite 2 engines on the left booster and 2 engines on
on the right booster

2. 0.20 second delay
3. Simultaneously ignite remaining 2 engines on each booster

2.6 RESULTS

2.6.1 PRELIMIANRY PROPERTIES OF LRB CANDIDATES

Preliminary design properties for the five downselected LRB configurations are
listed in the first table of Figure 2.6. Booster wail thickness values were chosen to
support launch loads only as opposed to thickness values to achieve stiffness
comparable to SRB values.

Calculated values in the second and third tables of Figure 2.6 were used to
determine bending frequencies of the STS model with each of the LRB
configurations. The data represents a single degree of freedom analysis in the
cantilever mode with a uniformly distributed mass cantilever beam for the boosters,
and an end-loaded car_tilever with a "mass-less" spring for the Orbiter/ET. A first
mode frequency range of 0.15 Hz. to 0.22 Hz. was determined for the five booster
configurations, and these boundary values were used for anlysis.

2.6.2 SENSITIVITY ANALYSIS

The dynamic response sensitivity to frequency is illustrated in Figure 2.7. The SRB
configuration (.30 Hz.) is to the left, followed by LRB configuration #1B (.22 Hz.), and
configuration #5D (.15 Hz.) on the right. For the three transient plots, SSME stagger
is held constant at 0.12 sec.

Comparison of the three plots shows that booster bending stiffness determines the
frequency of the configuration. If stiffness is decreased, the maximum bending
moment and the time delay to the minimum moment both increase. This relationship
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is aggravated when the half wave-length of the system is in close proximity to the
total SSME rise time, i. e. •

(1.905 + T1 + T2) = 1/(2f) (i)

Fortunately, the two variables most responsible for the dynamic transient, i. e.
booster stiffness, and total SSME rise time, can be vaded to modify the dynamic

flexure of the system.

2.6.3 ANALYSIS OF CANDIDATE CONFIGURATIONS

Transient response and release analyses for the .15 Hz. and .22 Hz. configurations
were performed using both the nominal SSME stagger timing (T1 = T2 = 0.12 sec),
ancl also with a series of modified values for TI. For analyses with the nominal

SSME stagger timing, release of the stack was performed at the same bending
moment magnitude experienced by the nominal SRB configuration. Delaying release
until the minimum moment point would impose a serious impact on ET propellant

margins, because of the increased time delay associated with the more compliant
boosters. Two points in the transient response meet this minimum moment criteria.
One ocours prior to the maximum peak and one after, both of which were examined
for feasiblity.

For analysis with the modified values for T1, release of the stack was performed at
the the earliest point where all SSME engines were above the minimum thrust level
of 90%, and the base bending moment was less than or equal to that experienced by

the SRB configuration.
For all cases, the start of the LRB ignition sequence was timed such that T/W =1 at

the identified time of release.

2.6,3.1Confi0urations Using Nominal SSME Staacer Timtna Release
analysis for configuration #1B (.22 Hz.) with nominal SSME stagger is summarized in
Figure 2.6 and illustrated in Figure 2.9. Release prior to the maximum bending
moment cannot be accomplished because all three SSMEs have not developed
thrust levels greater than 90% at the time the moment begins to exceed the defined
release value. The earliest possible release time after the transient peak occurs at
5.035 sec after SSME ignition. To achieve T/W =1 at release, 4 LRB engines (ignited
at 3.987 sec ) are at 73% of RPL, and the remaining 4 (ignited 0.20 sec later) are at
58.6% of RPL.

Release analysis for configuration #5D (.15 Hz.) with nominal SSME stagger is
summarized in Figure 2.10 and illustrated in Figure 2.11. For this more compliant
booster, release prior to the maximum moment is feasible. Here, the response to
SSME ignition is delayed enough that all SSMEs are above 90% of RPL at the time
the moment increases beyond the defined release value. Release at the defined
moment magnitude occurs prior to the peak at 2.039 sec with 4 LRBs at 73.1% and 4
at 58.7% of RPL. While not shown in Figure 2.11, by "backing down" the transient plot
to the point where the last ignited SSME is at 90% of RPL(consistent with constraint
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#3) additional improvements in ET propellant margins, bending moment at release,
and the time delay to release can be realized. The earliest possible release time
after the transient peak occurs at 6.858 se¢ after SSME ignition. To ach=eve T/W =1
at release, 4 LRB engines (ignited at 5.814 se¢) are at 72.8% of RPL, and the
remaining 4 (ignited 0.20 se¢ later) are at 54.4% of RPL.

The increase in maximum moment, deflections, and time delay encountered with
LRBs using "nominal" SSME ignition stagger timing indicates these configurations
should not proceed through a full cycle of response prior to release. Consequently,
analyses were performed on the two LRB configurations to determine the potential
benefit of modifying the total SSME rise time.

2.6.3.2 Modified SSME Rise Time Modification consisted of varying the stagger
time between the first and second engine starts (3"1), to negate the relationship
between total rise time and the half wave-length of the system (Section 2.6.2).

Stagger time between second and third engine starts (T2) was held at 0.12 sec.
Discussion of the following figures is in comparison to Figure 2.3, Nominal STS
ignition Sequence.

A series of transient response plots for configturation #1B (.22. Hz.) with T1 values
of 3.0, 3.5, 4.0, 4.5, and 5,0 seconds is illustrated in Figure 2.12. For all cases plotted,
a significant decrease in the maximum bending moment is shown, and for cases with
3.5 _ T1 < 4.0 see., release can be accomplished to satisfy the constraints for
bending moment release limit and the minimum SSME power level constraint of 90%.

At first glance, the time delay until possible release appears to be significantly
greater than for the current SRB configuration. However, the dashed line labeled
"EQUIVALENT NOMINAL SSME ENGINE SECONDS" denotes the boundary where
the s_me amount of ET propellants (as the SRB configuration) would be consumed.
Comparison of this boundary with the boundary for release points labeled "SSME
POWER LEVELS @ 100, 96.3, & 90 %" demonstrates that a substantial increase in

ET propellant margins is possible.
Similar plots for configuration #SD are shown in Figure 2.13, with values for T1 of

4.0, 4.5, 5.0, and 5.5 seconds. For all cases, a significant decrease in the maximum
bending moment is demonstrated, and for the cases where TI_ 5.0, a substantial
decrease in the bending moment at release is realized. Additionally the ET
propellant margins gained by release at minimum SSME thrust levels are even
greater than that for the .22 Hz. case.

2.7 ALTERNATIVE EVALUATION

A summary of release data for the analyzed configurations is compared to
appropriate selection criteria in Rgure 2.14. Configurations #1B and #SD RELEASE

#2 require addlitional consumption of ET propellants (2033 Ibs and 7688 Ibs
respectivley) prior to launch. Reduction of ET propellants from the nominal margins
poses a significant impact to Orbiter intact abort and cross range capability. Because
of the impact to safety, both of these release techniques are immediately eliminated
from further evaluation.
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2.7.1 RELIABILITY

Bending moment magnitudes and & SSME engine seconds were assigned to the

criteria of reliability since a reduction in these parameters as compared to the nominal
SRB configuration could immediately be interpreted as an increase in current STS
design margins. A comparison of values for each category indicates that the more
compliant configuration #SD is superior to #1 B MOD T1 in reducing SSME burn time,
and also maximum and minimum bending moments. Configuration #5D MOD T1 is
supedor only in reducing the minimum bending moment, and thus can be considered
the best at reducing twang loads at release. Regardless of rela¼ive ranking, all three

LRB candidates show a substantial improvement over the stiffer SRB configuration.

i

2.7.2 SAFETY
w

As noted in Figure 2.13, all remaining candidates meet the requirement for SSME
health verification at 90% RPL. In fact, in order to realize the improvements in launch
characteristics they require release at 90% of RPL. To delay launch until the last
SSME was at 100% of RPL would negate these improvements since these
parameters are time dependent and increasing in magnitude at the time of release.
STS launch with the SSMEs at these power levels causes the last 10% of thrust to be
applied while the vehicle is flying, as oppposed to the current practice of restraining
the stack until all engines are up to 100% of RPL. This would require a new engine
qualification program to verify SSME safety and function in a new environment.

The question of LRB engine health verification is significant to all LRB
configurations since thrust revels at taunch are relatively low. This situation is driven
by the constraint of T/W =1, where the intent is to reduce the longitudinal lift-off
transient. This longitudinal load fluctuation at the SRB/ET thrust fittings occurs when
the stack is explosively released from the launch pad and the last two million pounds
of thrust are applied (from two SRBs) after release. Instantaneously releasing the
stack with T/W > 1 would aggrevate this condition by introducng a greater step input
to the system, producing longitudinal vibration more severe than the current practice.

Because of this, the LRB engine health verification criteria may become the driving
factor in choosing a launch release system and technique. Health verification criteria
are constrained by the TAN limitat release, the SSME minimum RPL limit, and the
effect of explosive release and the resultant longitudinal transient. If LRB engines
require power levels greater than those listed in Figure 2.13 to verify them "Go for
Launch", explosive release becomes impractical because of these constraints. The
practice of running LRB engines up to greater thrust levels for health verification, and
then throttling back for launch levels would overcome these constraints, but would

require an inordinate amount of propellant consumption on the pad, resulting in much
larger design capacity, thermal problems from exhaust plumes, and possible
performance losses from additional inert tank and structure weight.
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2.7.3 PERFORMANCE

ET propellant savings could be interpreted as safety criteria for increased capability
to close the gaps between intact abort modes, or as additional ascent performance.
Since the three remaining configurations do not penalize ET propellant margins of
the current Orbiter/ET configuration, no impact to abort margins is realized. As in the
case of reliability, all three of the remaining candidates demonstrate a significant
improvement in ET propellant margins, with configuration #5D REL #1 providing a
substantial savings in ET propellants at more than 75001bs.
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3.0 CONCLUSIONS
l

Trade study conclusons are listed in Figure 2.15. As shown in the transient
moment plots for LRB configurations, the SSME ignition sequence can be used to
manipulate the resulting transient, minimize the adverse characteristics of the STS
launch sequence, and improve propellant margins. While the SSME engfine rise
time is considered constant at 1.905 sec., the time intervals between engine starts
can be vaded to produce desirable results without impacting current STS limitations.

Also demonstrated by comparison, when the half wave-length of the system
increases beyond the SSME rise time, the response time increases, allowing greater
SSME thrust to build up before bending moment limits are exceeded. Thus, the more
compliant booster configuration is advantageous to controlling and reducing the
transient loads and twang.

The constraints on T/W and the resulting low LRB thrust levels at release may
present an insurmountable problem for explosive release techniques. Issues of
control authority and collision avoidanced near launch pad hardware, health
verification at low thrust, and the risks of launching with propulsion systems operating
below nominal levels will be difficult to resolve. Coupled with the difficulties of
duplicating launch environments for LRB and new SSME engine qualification
programs, these issues may preclude the use of explosive launch release altogether.

4.0 RECOMMENDATIONS

Trade study recommendations are listed in Figure 2.16. If the issues associated
with low LRB thrust levels can be resolved, it is recommended that investigation of
transient manipulation and explosive release techniques continue for LRB

configurations. Options other than ignition sequence timing and stiffness reduction
remain to be explored. Investigation of SSME rise time variation and the impact to
STS operations is recommended as a first alternative. The feasibility of tilting the
stack (on the launch pe,d) back in the X-Z plane such that the CG moment arm for the
Orbiter/ET mass contributes greater resistance to the off-set SSME thrust should also
be investigated.

If the issues of LRB thrust levels at release cannot be resolved satisfactorily, it is
recommended that a damped launch release system similar in function to those used
for Saturn and Atlas launch vehicles be adopted. This type of system could be
supedor in reducing base bending moments and vibratory twang loads at release,
while providing gradual vehicle release as thrust builds up to flight levels.
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UPDATE ON T.S. 1.10 IGb,_TION SEQUENCE

Since this initial trade study was performed, a dynamic loads model was developed

and a fkrSt CUtmade of loads and deflections. Our basic philosophy continues to be:

I) A soft LRB is acceptable, even preferable when

2) SSM.E sta.nsare staggered about ,4 seconds and

•3) The whole stack is held down until aJ.1engines (Orbiter and LR.Bs) exceed 90%

of full thrust (allowing time to determine engine health and then

4) A controlled, "slow" release occurs. There is probably insufficient room for

Saturn type release heads. Therefore we are considering explosive bolts + st,etch bolts

drawn out about 6" through a die.

"1"nksconcep_ appears to have man), advantages including lower deflections and less

twang than the current STS system with SRM.
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UPDATE ON T.S. 1.13 RECOVERY SYSTEMS

At the midterm review we recommended that LRBs be expended based on cost

estimates which at that time showed:

An additional development expenditure of over $ IB should just about pay for itself

in I00 flights (LOX/R.P vehicle).

Invesstigadon of the cost effectiveness of recovery and reuse includes: a) upsized

vehicle and en_ne to handle the added weight of recovery systems, b) an allowance of

approximately 10W/ofor LRBs lost in the recovery attempt, and c) estimates of 15% to 50%

refurbishment costs.

Our data conmues to show that reusability approximately breaks even for LR..B

flight ratres up to 1S/year. For other vehicles at higher fUght rates, recover',' and reuse

may be cost effective.
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Date:

To:

From:

Subject:

Attachment:

Purpose:

March 1, 1988 GDSS-LRB-MIN-88-027

Distribution

Dan Heald

Minutes of an LRB Interim Engineering Review Board (ERB) for
Separation System Selection (T.S. 1.16) conducted 26 February 1988.

Trade Study ERB Viewgraph Charts

This was an interim ERB for this Trade Study and was held to present the current results
to provide information and obtain concu,'rence or redirections on this trade before the
final review.

Discussion: ERB members present: Dan Heald - Chairman, Paul Brennan, Steve Seus, Ed Russ,
Ron Koontz, Peter Stubner, Frank Hauser, Tina Nguyen, Scott Stumpf, Don
Schnattschnieder, Guy Buchanan, and Carol Pouliot.

Paul Brennan, the Trade Study Leader, presented the preliminary results of the trade
using the attached charts. Paul presented the key considerations for abort, including
orbiter failures, LRB failures and response times. In reference to the Aerc Data
Comparison chart, it was suggested that the subtitle read "Aero Data Comparison
for Nominal Separation." Paul Brennan received an action item to convert the
coefficients to forces on the graphs of this page.

On the chart of Control Considerations, it was decided that the Maximum Pitch
Gimbai and the Maximum Yaw Gimbal values were reasonable, but that for a
conservatJve estimate one should analyze a flex body. It was suggested that Paul
show nominal separation vs. early separation and that the method for doing the statistical
correlation (root sum square) for determining the shut down thrust differential be added
to the chart.

The Separation Cue and Sequence chart indicates that the cue will be based on a "low
fuel level sensor." This should be discussed with Eagle Engineering. The question
remains as to what will control separation for aborts: vehiclej ground control, or crew.

In discussing the preliminary sizing results, it was determined that early separation has a
weight penalty of only about 2300 Ibs. compared to normal separation. Need to discuss
benefits of early separation with Walter Thompson. Range safety issues must be
investigated. Action item for Paul Brennan to locate newest safety document.

Conclusion was to stop further work until Walter Thompson, et al, can establish
the early LRB separation design conditions.

Prepared By: Carol J. Pouliot
Systems Engineering

Approved By:
D.A. Heald
Chief Engineer- LRB



TRADE STUDY 1.17
LRB STIFFNESS, STRENGTH, LOADS
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1.0 Introduction

Prior to holddown release the space shuttle engines are ignited sequentially and health monitored.

The SSMEs rise to full thrust level in approximately 4 seconds and during this period the whole

stack, due to asymmetry of configuration and eccentric SSME thrust load paths, is pushed over

laterally responding dynamically with high lateral displacements and base bending moments while

the space shuttle is still attached to the ground support equipment (GSE) and MLP. There are limits

to which the ground support equipment can track the lateral excursions and the holddown system

can sustain the base loads. From the studies performed with candidate LRBs, an LRB 16 ft or less

in diameter ,designed purely on the basis of strength, responds dynamically to the SSME thrust

buildup with greater amplitudes of displacements and loads. The options for the flexible LRBs are

either to simply increase the stiffness which results in additional weight, or to decrease the SSME

thrust rise rate which is accomplished by staggering the ignition of SSME engines. In this study

the impact of SSME ignition staggering was studied in detail for LRB configurations for load and

deflection relief.

The launch sequence with LRBs is considered to be very similar and qualitatively result in similar

response. There are however some differences between LRB liftoff and SRB liftoff. LRBs have

more engines which require health monitoring ,similar to SSME engines, before holddown release.

As a result LRBs will be held on pad with T/W ratio considerably higher than SRBs before

holddown bolts are released. Whether or not a slow release system is required depends upon the

T/W ratio of stack at the time of release. Included in this trade study is the determination of

maximum T/W ratio ,for LO2/LH2 pump LRB configuration, at which the explosive bolt release

system could be used.
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Objective:
Establishthestructuralstiffnessrequirementsfor LO2/LH2Pump,LO2/RP1pumpandLO2/RP1

pressurefed Boosters.DetermineminimumStiffnessthatdoesnotimpactthecurrentGround

supportequipmentandtheSSMEignitionsequence.DetermineLoadsandperformapreliminary
design.DetemainethemaximumT/W ratiowith thecurrentexplosivebolt releasesystem.

Ground Rules:

• Maintain the current ignition sequence for SSME engines

• Maintain current load levels at the attach points

• Maintain twang level similar to current STS

Assumptions:

• Nominal Thrust Buildup Sequence

• Booster Stiffness Primarily dominated by the Tank stiffness

Guidelines:

• Minimum Impact to ET and Orbiter

• Minimum Impact to the GSE

• Minimize Release loads
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2.0 GSE Interface - ET Umbilical

ET umbilical follows the STS stack deflections during pushover (SSME thrust buildup) and is the

primary interface area of concern between the Space Shuttle Vehicle and the GSE (Ground Support

Equipment). The objective in this study is to predict the deflections of the ET umbilical and

establish the minimum booster stiffness required to maintain the umbilical excursions to within the

current ICE) limits imposed on the current GSE. The ET umbilical is currently designed to track

approximately 20 inches during SSME thrust buildup and 17 inches during the rebound

(Shutdown).

3.0 Stiffness Requirement

The space shuttle is an asymmetric launch vehicle.During liftoff it subjected to a large lateral

component of SSME thrust causing high lateral excursions of the stack on pad prior to release. The

magnitude of SSME thrust and its very sharp rise rate are both responsible for large amplitude of

lateral displacements and bending loads in the LRBs. The LRB structure ,therefore, should satisfy

two requirements; first that excursions of the STS stack remain within the current GSE tracking

limits and secondly that the base bending moment at the release time does not exceed the current

levels. Both these requirements are influenced by the SSME thrust rise rate and the stiffness of the

LRB structure.
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3.1 Stiffness vs Strength- Monocoque

For LH2/LO2 boosters less than 16.5 ft diameter (approx.) the stiffness criterion governs the

design and strength is automatically achieved. Lower diameter boosters designed for stiffness pay

penalty in structural weight. This penalty is gradually reduced as the diameter is increased. Beyond

16.5 ft diameter the booster structure can be designed for strength. Figure 3.1-1 schematically

illustrates stiffness and strength boundaries for various LRB diameters.

Monocoque tanks are designed to withstand loads up to onset of buckling of the cylindrical

section.

Isogrid tanks are designed very similar to monocoque tanks- up to buckling load of the tank.

Skin Stringer tanks are designed to withstand applied loads until the buckling load of the stringer

is reached. The skin between the stringers is allowed to buckle.

Figure 3.1-1 Stiffness vs Strength - Monocoque

1.0

Thickness required for
.24 Hz Natural Frequency

! STRuCI'uRE I_ Thickness required to
IMPACTSGSE :.iiii!ii!ii!_;...... prevent b kl ng

! I ! I I I I

12 13 14 15 16 17 18 19
TANK DIAMETER (FT)

Boosters less than 16.5 ft dia require stiffening

Lower the dia more the weight penalty
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4.0 Options for Reducing ET Umbilical Deflections

There are two options to reduce the dynamic excursions of the stack:

• Stagger the ignition of SSME engines

• Stiffen the structure

The dynamic amplitude of lateral excursions are a function of the ratio of the period of the structure

and the thrust rise time of SSME engines.To maintain deflections witnin ICD limits, this ratio is

this ratio ,in new designs, is maintained either by increasing the thrust rise time of SSME engines

(staggering the start of SSME engines) or by stiffening the structure (reducing the period, increase

frequency). Figure 4.1-1 shows the dynamic amplification factor against this ratio. The higher the

ratio of periods, the lower the dynamic amplification factor and lower the amplitude of dynamic

response.

LRB structure designed for strength and using SSME stagger to limit deflections are lighter in

overall weight but impact the orbiter on board software. The bending loads at release are lower

side and the twang is mild.

LRB structure designed for stiffness weigh more and may exceed the current base bending moment

at the release. The twang may be more than current STS.

Figure 4.1-1 Dynamic Amplification of LRB response to SSME Thrust Rise

2.o 
0+ _ SSME Thrust

Dynamic 1
Amplification

 aotor
1.0 1.0 2.0 3.0

Time-I_

(R_e time of SSME/Period of Stack)
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4.10otion -I Stageer SSME ignition seauence

The option to stagger the SSME ignition sequence is beneficial in reducing the maximum loads

during pushover but delays the liftoff and also causes higher base bending moment at liftoff.

Figure 4.1-2 schematically illustrates the consequences of staggering the ignition of SSME 2 and 3

engines. There is a trade-off between the maximum bending moment (or deflections), the bending

moment at release, and the time to liftoff. The SSME fuel consumption may not be much affected

as late ignition of SSME 2 and SSME 3 is compensated by the longer liftoff times. This option is,

therefore, attractive if weight saving is very important. This is the case with lower diameter

boosters which will require considerable increase in wall thickness to meet the stiffness

requirements.

Figure 4.1-2 Influence of SSME Ignition Stagger on Loads

Base Bending
Moment My

Liftoff
With Current SSME

Ignition Seq

BENIFITS

Liftoff
With Staggered SSME
Ignition Sequence

, uenca-__ _/

°--- _ _
Time- Seconds _ §

_'t_. _ _ _Staggered

__f,___" SSME Ignition

3kJ r V '_ Current SSME
Ignition

Base moment at holddown release (liftoff)
higher with stagger

Maximum base bending moment
lower with stagger

Uftoff is delayed with SSME stagger

• Lower stresses In aft skirt better margin for safety

• lower ET umbilicalexcursions

• Lower structuralweight

IMPACTS
• Change in GPC software only
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4.1.20vtimal SSME Ignition Sta_,_,er

The optimal SSME ignition stagger is approximately equal to half the f'trst fundamental period of

the stack. If the start of SSME 2 and 3 engines is staggered by more than half the period then the

displacement decreases in the first cycle of the displacement oscillation but builds up in the

subsequent oscillations. Figure 4.1-3 illustrates the LO2/RP1 pump fed LRB response to stagger

times of 1 seconds, 2 seconds, and 4 seconds and shows that for 2 seconds stagger, which is

about half the period of the stack, the response is stabilized to a harmonic with lowest amplitide

after 7 seconds. Normal liftoff takes place during first cycle of oscillation but FRF, which is a 20

second event, several oscillation cycles The stagger values higher than half the stack period are

ineffective in limiting deflections during FRF and therefore are not recommended. The optimal

stagger for RP1/LO2 booster is 2 seconds, at other values the deflections are higher during FRF.

deflection

inches

Figure 4.1-3

Effect of stagger times on ET Umbilical Response

(LO2/RP1 pump)

time - seconds

o 2 4 6 8 lO 12

-5

-lO

15

2 o sec.

25

30

35

[ 4 sec. stagger]

stagger I
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4.20otion -2 Stiffen LRB Structure

Weight Impa¢¢

A monocoque construction with a first fundamental frequency of .2 Hz is 42000 lbs lighter than a

monocoque construction (of same diameter) of the fundamental frequency of .3 Hz. This holds for

LH2/LO2 pump fed booster approximately 15.8 ft diameter. Similar trends hold for other LRBs.

Figure 4.2-1 Illustrates the impact of increasing the first fundamental frequency by maintaining the

same diameter but increasing the wall thickness of the propellant and oxidizer tanks.

Figure 4.2-1 LH2 tank structural weight with first fundamental LRB frequency

TANK WEIGHT

KLBS

LH2 TANK WEIGHT VS FREQUENCY OF LO21LH2
PUMP

110

100

90

80

70

60

50

40
.22 .23 .24 .25 .26 .27 .28 .29 0.3

BOOSTER FREQUENCY

(HZ)
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5.0 Strength designed LRBs, SRB, FWC SRB and ASRM stiffness

The FWC motor case SRB which was to fly from Vandenberg Air Force Base had natural

frequency of approximately .24 Hz. This booster was flight certified and was about to fly its

intended mission. The deflection of ET umbilical is approximately 32 inches which exceeds the

current specified ICD limit of 20 inches during buildup and 17 inches during rebound. ET

umbilical modifications were performed to accommodate these deflections.

The ASRM (Advanced Solid Rocket Motor) request for proposal to the industry specifies ,in very

specific terms, the minimum stiffness requirements for the new rocket motor case. The ASRM

motor case stiffness is allowed to equal approximately to that of FWC motor case SRB. When

ASRM is operational, the booster will weigh less, can be less stiff compared to current SRB, and

consequently deflect more than current SRB.

The deflections of the strength designed LRBs and the current SRB are shown in the table 5.1-1.

The LO2/RP1 pump fed booster is most flexible and deflects most. The LO2/RP1 pressure fed is

most stiff and deflects less than SRB.

Extrapolation of our analyses results and the data on the current and previously designed boosters

suggests a minimum frequency of .24 hz .At this stiffness level.the LRBs remain within the

deflection envelope of Ground Support Equipment with the current liftoff sequence.
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Table 5.1-1 ET Umbilical Deflections for Strength Designed LRBs and the SRB

First Natural Frequency
(HZ)

ET Umbilical Deflection

(Inches)

Current SSME Ignition
sequence

With 2 seconds delay
In SSME#2 and SSME#3

Ignition

RP1/LO2 LH2/LO2
PUMP PUMP

SRB DIA DIA
16.25 18.0F1

.31 iiiiiiiiii!ii_i_ii!_i!iiiiii:i:ii::!ii:i .2 9

:i:;:_ii_-i!_E_!_i'i!i!i!i!i!_iiii i i i i • : i:::i : i::i

iiiiiii!ili i
16.0 22;0 13.0

iiiiiiiiiiiiiiii',iiiiiii_i
i_:,iii',i_,i',iiiiiiiii',i_,i!i_,i'_i_,iiiii',i::i!:_i

iii!i_!_',.'0!!!_i_i:_i16_ o:

i__::i::ii_::iiz::!::!::_::!i_::!::!i!::i::!i!::_iiii_i!i_i : ......

RP1/LO2
PRESSURE

.28

11.0

8.0

FLIGHT QUALIFIED FILAMENT WOUND CASE SRB DEFLECTED 30 INCHES
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6.0 On pad Response of Strength Designed LRBs

6.1 LO2/LH2 Pump fed LRB

Two LO2/LH2 pump fed booster concepts, a 16.25 ft diameter and a 18.0 ft diameter ,were

studied for the SSME thrust buildup and shutdown transient response.

6.1.1 16.25 ft Diameter LO2/LH2 pump fed booster

SSME Thrust Builduo

The strength designed 16.25 ft diameter LO2/LI-I2 pump fed booster has a frequency of .22 Hz

and its maximum ET Umbilical deflection with current SSME ignition sequence is approximately

27 inches. Figure 6.1-1 illustrates the SSME thrust buildup transient with current SSME ignition

sequence, with 2 seconds delay in SSME 2 and SSME 3 ignition, and the corresponding SRB

response. With the current SSME ignition sequence the deflection exceeds the current ICD limit on

ET umbilical tracking capability and ,therefore, either the SSME ignition stagger or stiffening of

the tank structure is required to satisfy the GSE constraints. If ET umbilical tracking capabilities

are modified to track 27 inches then with the current SSME ignition sequence the liftoff takes place

at 7.8 seconds. The Stack stays on the pad for approximately 1.1 seconds more than the current

SRB system.

The deflections during SSME buildup are brought to SRB level by staggering the SSME engines;

start engine 1 first and ignite SSME 2 and 3 engines simultaneously 2 seconds later. Although the

deflection is approximately same as SRB deflection, the transient stretches and consequently the

time to liftoff increases from 7.8 seconds (without stagger) to 9.4 seconds.

Figure 6.1-1 ET Umbilical Deflection during SSME Thrust Buildup
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$SME Shutdown The worst shutdown sequence for SSME 1 failure is if SSME 1 abort occurs at

16.6 seconds. Figure 6.1-2 illustrates the ET Umbilical displacement transient due to SSME 1

shutdown at 15.5, 16.6 seconds, 17.8 seconds, and 18.9 seconds. This covers engine shutdown

during a time span equal to half period of the Stack. The response repeats in the interval equal to

the period of the STS stack and therefore illustrates a situation during liftoff, at 4.6 seconds, 8.6

seconds, and during FRF which is a 20 second test event. For FRF the maximum response occurs

when SSME 1 shutdown at 16.6 seconds. If the shutdown is due to an abort situation then, for a

safe abort the SSME 2 and 3 are to be shutdown at 17.8 seconds and 18.9 seconds respectively.

Figure 6.1-3 shows the combined response for this case. The maximum rebound due to this

transient is 11 inches which is within the current GSE capability.

Figure 6.1-2 SSME 1 Shutdown Transient for ET Umbilical at various shutdown/abort times
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Figure 6.1-3 SSME Thrust Buildup and Shutdown Transient for ET Umbilical
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6.1.2 18 ft Diameter LO2/LH2 aumo

The buildup and shut down transient for a normal buildup and shutdown as in FRF is shown in the

figure. The maximum deflections remain within the current GSE capabilities. There is no need to

stagger the SSME engines or increase the stiffness. The optimal shutdown sequence is to

shutdown SSME 3 at 16.8 seconds, SSME 2 at 17.8 seconds and SSME 1 at 18.8 seconds.

Figure 6.1-4 shows the SSME thrust buildup and shutdown ET umbilical deflection response fo

18 ft diameter LO2JIA/2 pump.

Figure 6.1-4 SSME Thrust Buildup and Shutdown Transient for ET Umbilical

18 Ft Dia., LO2/LH2 pump
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SSME Thrust Builduo loads

The lower segment of LRB experiences the maximum load during pushover. This condition is the

design condition for overall design of LH2 tank. The bending moment at the base for LO2/LH2

boosters is slightly higher than the corresponding SRB values but poses no problem as the aft

structure can be designed to accommodate these loads without impacting other Space Shuttle

Components.

Shown in the figure 6.1-5 are the maximum design loads along the LRB length.
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Figure 6.1-5 LO2/LH2 pump design loads- SSME thrust buildup
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LH2 Tank Design

Based upon the derived loads and noting that the booster is more stiff than necessary two designs

are developed. The first is the monocoque design in which the booster maintains slightly more

stiffness and the skin stringer design which has lower stiffness than the monocoque.

The skin stringer design allows for limited skin buckling between the stringer and is therefore a

weight efficient design. The monocoque is designed for stress levels below the the shell buckling

limits. The skin stringer configuration for LH2 tank is shown in figure 6.1-6. Also shown in the

figure is the thickness for a monocoque LH2 tank.

LH2 Tank Skin Stringer vs Monocoque

The skin stringer construction is lighter and more flexible than the monocoque. It experience

higher dynamic base bending moments than the monocoque. Although its frequency is lower its

deflections are maintained within the current GSE limits.

A monocoque tank is very stiff, has small on pad deflection, experiences lower dynamic base

bending moment during pushover, is heavier, and responds with a higher base bending moment at

the time of release (higher twang).

From all the considerations a skin stringer configuration for 18 ft diameter booster is an optimal

design and is recommended.

365



Figure 6.1-6 LO2/LH2 pump LRB LH2 tank design based on current Loads
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6.2 LO2/RP1 Pump Fed LRB

The strength designed LO2/RP1 pump fed booster is the most flexible of all the designs. The

booster deflection with current SSME ignition sequence is approximately 30 inches. Even with

SSMEs staggered the deflection remains high. The dynamic response of this LRB is illustrated in

figure 6.2-1. Staggering the SSME engines produces response to 22 inches which is still high.

The options to limit deflection are either stiffen the structure or stagger the SSME engines along

with lowering gimbal angles of SSMEs or perform ET umbilical facility modifications. These

Options are illustrated in figure 6.2-2.

The recommendation is to stiffen the structure up to .24 Hz natural frequency. From analyses this

is the optimum level of stiffness with minimum weight penalty.
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Figure 6.2-1 Influence of SSME ignition stagger on LO2/RP1 pump ET Umbilical Response
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6.3 LO2/RP1 Pressure Fed LRB

The LO2/RP1 pressure fed LRB is stiffer than the current SRB and therefore has no deflection

problem. With stagger this booster has even smaller deflections. Figure 6.3-1 shows a typical

pressure fed LO2/RP1 response.

0

Figure 6.3-1 SSME Thrust Buildup and Shutdown Transient for ET Umbilical
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7.0 Maximum T/W Ratio for LO2/LH2 LRB Configurations At Release

LRB holddown and release requires all LRB engine health monitoring prior to holddown release

somewhat similar to the way SSME s are currently monitored during launch. This engine health

monitoring creates a new launch environment namely - liftoff at considerably high T/W ratio than

the current STS with SRBs and results in a load transient at forward ET/LRB thrust fitting. An

analytical study was performed to evaluate the forward attach fitting loads, generated from a

sudden release (like the current explosive bolt release), for LO2/LO2 pump fed LRB configurations

for different LRB thrust levels and thrust rise times. From this study the maximum LO2/LH2

pump LRB thrust on pad prior to release is established to be approximately 87% of the full LRB

thrust level. The LO2/LH2 monocoque and LO2/LH2 skin stringer configurations both could be

held on pad up to 87% of the full LRB thrust. The difference is in the time at which the forward

attach fitting peaks.

The thrust fitting load transient for the monocoque is shown in figure 7.1-1 and the transient for

the skin stringer configuration is shown in figure 7.1-2. The monocoque LO2/LH2 pump LRB

achieves the limit load of 1634 KLBS at 1000 milliseconds while the skin stringer LRB achieves

the limit at approximately 1400 milliseconds after holddown release. The current explosive bolt

release system can be used if the LRB engine health monitoring can be performed below 87% of

full LRB thrust level. Beyond 87% a slow release system is requited to damp the transient.
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Figure 7.1-1
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8.0 Conclusions

The 18 ft diameter LO2/LH2 LRB monocoque or skin stringer designs are sufficiently stiff on pad

and can be released using the current SSME ignition sequence. The current GSE equipment is

capable of tracking the STS deflections during pushover. The quick release system (explosive bolt

release) used currently with SRBs can be used for LO2/LH2 pump LRBs provided that the

maximum LRB thrust at the time of release is less than 87%. The LRB engine health monitoring

should be accomplished within 87% of full thrust level for LRBs. If the LRBs are released at

higher than 87% of full LRB thrust level then a damped or slow release system is necessary to

maintain thrust fitting loads to safe level.

The most flexible configuration is LO2/RP1 pump which either requires SSME ignition stagger

and SRB structural stiffening to maintain deflections within the GSE capabilities. Limiting on pad

deflections by increasing the structural stiffness only, while maintaining the diameter (13.7ft)

results in considerable structural weight increase.

LO2/RP1 pressure fed booster is the most stiff configuration. The on pad deflections are well

within the current GSE capabilities.
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